
Developing Dynamic
Web Pages: Part 1
by Steve Troxell

Last month, Bob Swart’s Under
Construction column gave you

an introduction to using Delphi 2 to
create an Internet server applica-
tion that processes a query re-
quest from a browser through the
Common Gateway Interface (CGI).
In this article, we’ll complete the
discussion and look at some of the
different forms of CGI and other
methods. Next month, we’ll see
how to implement database access
by including the BDE.

To recap the premise of CGI apps
from Bob’s article, a web page
might be designed to contain one
or more data entry controls within
a container space called a “form”
on the HTML page (I’ll call this the
“query page”). The user fills in the
information for these controls
from their browser and then “sub-
mits” the form contents (that is,
the values for the data entry con-
trols) to the web server, usually by
clicking a Submit button on the
query page. This sends a special
HTTP message to the web server
which includes the data values for
all the data controls on the query
page as well as the location and
name of a dedicated server-based
program or script to process the
request. This program is identified
as part of the HTML definition for
the query page.

This program’s job is to read the
data values sent by the client, do
some sort of processing, and re-
turn a formatted HTML page back
to the client (I’ll call this the re-
sponse page). Presumably, the re-
sponse page contains information
customized in accordance with
whatever data values the user had
entered on the original query page.

Standard CGI
The technique Bob introduced to
you is called “standard CGI” and
was developed by the National
Center for Supercomputing

Applications (the folks who cre-
ated the WWW). Standard CGI is a
de facto standard for processing
client input received from a web
browser and, as such, is very
widely available to most web serv-
ers on most platforms.

As you saw last month, the web
server communicates the parame-
ters of the CGI session to the CGI
program via environment vari-
ables (see Figure 1) and generally
provides the user input via the
standard input device. The pro-
gram merely reads and decodes
text records from the standard in-
put device and produces a re-
sponse page by writing HTML
formatted text to the standard
output device.

In reality, the mechanism by
which your CGI app receives the
user input – the contents of the
data controls from the query page
– varies depending on the type of
“submit” action defined in the
query page. When a user clicks the
Submit button on a query page, the
action may be a GET or a POST. When
the submit action is POST, as in
Bob’s case last month, the user
input is indeed passed through to
the CGI program via the standard
input device. However, when the
submit action is GET, the user input
is passed via the QUERY_STRING
environment variable. Processing
forms through GET may be a bit

faster than POST because no file I/O
is involved to read the user data.
However, you’re restricted to the
length of that operating system’s
environment variable for passing
all your form variables to the CGI
application. The data received in
either case is formatted identically,
there are just two different pipe-
lines from which you might obtain
it. We can determine which action
we are processing by examining
the REQUEST METHOD variable.

WinCGI
The standard input/output model
for CGI arose from the UNIX plat-
forms which were widely used in
the early days of the web (and still
are to some extent). It was fairly
straightforward for the web devel-
opment tools available for UNIX,
chiefly C and Perl, to manipulate
these devices. In recent years,
Windows servers have become
more and more popular as web
servers. While most Windows de-
velopment tools are quite capable
of dealing with the standard input
and output devices, some (such as
Visual Basic) are not.

WinCGI is an alternative CGI in-
terface originally developed by
Robert Denny for his WebSite web
server software but now supported
by other vendors as well. WinCGI
uses a Windows INI file to pass CGI
session parameters and user data

SERVER_SOFTWARE=Microsoft-Internet-Information-Server/1.0
SERVER_NAME=www.stevet.tpower.com
GATEWAY_INTERFACE=CGI/1.1
SERVER_PROTOCOL=HTTP/1.0
SERVER_PORT=80
REQUEST_METHOD=POST
PATH_TRANSLATED=C:\INetPub\WWWROOT
SCRIPT_NAME=/cgi-bin/cgitest.exe
REMOTE_HOST=163.225.101.7
REMOTE_ADDR=163.225.101.7
CONTENT_TYPE=application/x-www-form-urlencoded
CONTENT_LENGTH=113
HTTP_USER_AGENT=Mozilla/2.0 (compatible; MSIE 3.0; Windows 95)
HTTP_ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

➤ Figure 1

8 The Delphi Magazine Issue 16

into the CGI application. Since INI
files are widely accessible to
any development platform for
Windows, WinCGI became popular.

The WinCGI program receives a
single parameter on the command
line which identifies the CGI data
file: an INI-format file containing all
the values you would have ob-
tained through environment vari-
ables with standard CGI (see Figure
2). All the values for the form’s
variables are found in the [Form
Literal] section, already parsed
and decoded. Rather than write the
response page to the standard out-
put device, we write to the file
specified by the Output File key in
the [System] section. The server
will then take this file and pass it
back to the client. Note the subtle
differences in syntax from stand-
ard CGI variable names: keywords
are separated by spaces rather
than underscores and some of the
names are slightly different.

Server APIs
The biggest problem with standard
CGI and Windows CGI is that they
are slow. These CGI applications
run as separate processes for each
request. That is, each time they are
accessed, the CGI program is
loaded, initialized, executed and
shut down. Because these CGI
processes are not persistent, this
startup/shutdown overhead for
each request is the most significant
drawback to CGI programs: they’re
slow to process requests.

Web server APIs, such as ISAPI
and NSAPI, allow more direct proc-
essing of server requests than is
possible with normal CGI methods.
Usually, you’ll write a DLL to han-
dle server requests through the
server API. As such, the DLL runs
within the web server process
space. Because of this, API tech-
niques provide much faster proc-
essing of server requests than
traditional CGI.

Server APIs also allow you to
write server request filters and
authenticators. For example, a fil-
ter might be used to append a
sponsor’s advertising within cer-
tain web pages accessed by the
browser. An authenticator can con-
trol access to certain parts of the

web site by requiring a username
and password and comparing
them against a database of access
rights before returning the
requested page.

However, the use of server APIs
also carries with it the prospect
that a buggy DLL could corrupt the
entire web server and they are in-
herently proprietary to the web
server being used. Because of this,
it may be better to get experience
building dynamic web content
through CGI, even if ultimately you
want the speed and power of serv-
er APIs. Also, before you count CGI
out, take a look at...

FastCGI
FastCGI, offered by Open Market
Inc and endorsed by the NCSA, is a
new improvement over traditional
CGI. FastCGI performs the same
tasks as CGI, but does so from a
persistent, isolated process that
listens on a socket connection for
requests to process. Since FastCGI

runs in a separate process space
from the web server itself, there is
no startup/shutdown overhead
with each request and risks to the
server from buggy applications are
reduced. FastCGI promises the
safety and ease of programming of
CGI with the performance and flexi-
bility of native web server APIs.
Also, programs written for CGI will
be compatible with FastCGI serv-
ers. We will not cover FastCGI here
since it is not yet widely available,
but support is planned for all the
major web servers including
Microsoft and Netscape. Watch
this space!

Data Encoding
Back to the work at hand. We’re
going to focus on standard CGI and
WinCGI for the remainder of this
article. Before we go any further,
we need to clarify how data is
encoded with these methods.

User data handed over to a pro-
gram by standard CGI or WinCGI

[CGI]
Request Method=POST
Query String=
Logical Path=
Physical Path=C:\INetPub\WWWROOT
CGI Version=CGI/1.2 (Win)
Request Protocol=HTTP/1.0
Executable Path=/cgi-bin/project2.dll
Server Software=Microsoft-IIS/2.0
Server Name=www.stevet.tpower.com
Server Port=80
Remote Host=163.225.101.7
Remote Address=163.225.101.7
Referer=http://www.steve.tpower.com/is2wcgi.htm
Content File=P:\WINNT\key6F.tmp
Content Length=64
Content Type=application/x-www-form-urlencoded

[Accept]
image/gif=Yes
image/x-xbitmap=Yes
image/jpeg=Yes
image/pjpeg=Yes
/=Yes

[System]
GMT Offset=-25200
Debug Mode=No
Output File=C:\INetPub\WWWRoot\cgi-bin\CGI6E.tmp
Content File=C:\WINNT\key6F.tmp

[Extra Headers]
ACCEPT=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
ACCEPT-LANGUAGE=en
CONNECTION=Keep-Alive
CONTENT-LENGTH=64
CONTENT-TYPE=application/x-www-form-urlencoded
HOST=www.steve.tpower.com
REFERER=http://www.steve.tpower.com/is2wcgi.htm
UA-PIXELS=800x600
UA-COLOR=color8
UA-OS=Windows 95
UA-CPU=x86
USER-AGENT=Mozilla/2.0 (compatible; MSIE 3.0; Windows 95)
PRAGMA=No-Cache
EXTENSION=Security/Remote-Passphrase

[Form Literal]
Text1=sample text
TextWithDefault=Default
Check1=
Dropdown1=John

➤ Figure 2

10 The Delphi Magazine Issue 16

through the QUERY_STRING variable
or the standard input device is
URL-encoded (the user data file
passed in from WinCGI via the
Content File key is already de-
coded by the server). As such, your
programs must be prepared to de-
code this data. As Bob pointed out,
user data is sent in keyword=value
pairs separated by an ampersand.

Since the equals sign and the am-
persand are used as special delim-
iters for the keyword/value pairs,
what happens if the user enters
one of these characters? In this
event, escape sequences are used
to represent the characters.
Escape sequences consist of the %
character followed by a 2-digit
hexadecimal number which is the
ASCII value of the character. There-
fore, if = or & appear literally within
the user data, they are converted
to %3D and %26 respectively.
Likewise, if a literal percent sign is
part of the user data, then it is
converted to %25.

Finally, any spaces in the user
data are converted to plus signs.
Bear in mind that if plus signs are
inherently present in the user data,
they are converted to the escape
sequence %2B. Any literal plus sign
in the user data can therefore be
treated as a space. [Editor’s note:
In the November issue Bob Swart
implied that in the URL encoding
spaces were replaced by under-
scores. This was actually a replace-
ment that Bob’s code was carrying
out in both the CGI form and the
Web-hosted book reviews data-
base file.]

Another thing to remember is
that for extended ASCII characters,
the actual character intended by
the escape sequence depends on
the character set (code page) used
on the client computer.

Figure 3 shows an example of
user input in a query form with
three data controls and the corre-
sponding URL-encoded user data
received by the CGI program.

The TCGI Component
Now we’re going to encapsulate all
that Bob taught us last month
about standard CGI and all we
know about WinCGI into a single
component that will allow our pro-

grams to work transparently with
either protocol. The TCGI compo-
nent reads the CGI environment
and passes the information on to
the program through a standard
interface. Our program reads the
values out of the TCGI component
rather than interfacing directly
with the CGI implementation on the
server.

The TCGI component is shown in
Listing 1. This component surfaces
two properties for accessing CGI
information: CGIItems and Form-
Items. These are TStringList com-
ponents which contain keyword
=value pairs for all CGI variables
and form variables respectively.

Since the naming of CGI variables
differs slightly between standard
CGI and WinCGI, we must decide on
a single naming convention for
both. For our purposes here, we
will use the WinCGI variable
names. The names we assign for
common access are defined in the
CGIVarNames array. These are the
names we will use when refer-
encing CGI variables from our ap-
plications. The actual variable
names used by each protocol are
defined in the CGIVars array. Form
variable names are passed through
as-is under both protocols, so we
always refer to them by the names
we assigned in the HTML definition
on the query page.

The heart of the TCGI component
is its Create method. Since the CGI
data really only moves one way
(from the browser to the applica-
tion), there’s no reason not to load
up everything immediately. The
Create method first determines
whether we’re operating in a stand-
ard CGI or WinCGI environment.
This is crucial to all the other op-
erations in the component. Next,
the output file (which may be

either standard output or a tempo-
rary file) is opened for writing the
response page and the required
header lines are written for us.
Finally, we load up the CGI vari-
ables into the CGIItems component
and the form variables into the
FormItems component.

The technique for loading the
form variables varies greatly be-
tween the two protocols, so I de-
cided to break that functionality
out into two separate methods. For
standard CGI, we must decide if the
form action is a POST or a GET. On
POSTs, we read and decode CONTENT
LENGTH bytes from standard input,
just as Bob showed us last month.
For GETs, we must read and decode
the contents of the QUERY STRING
variable.

Doing this same task for WinCGI
is vastly simpler since the server
has already done the hard work for
us. All we have to do is copy the
[Form Literal] section of the INI file
into our FormItems component.
Luckily, TIniFile.ReadSectionVal-
ues was tailor-made for this.

Testing The TCGI Component
Listing 2 shows a test CGI program
which simply dumps all the CGI
input into an HTML response page.
Figure 4 and Listing 3 show a test
HTML page that calls CGITest to
exercise our component. This test
assumes that the HTML query page
(TEST.HTM) and the CGITEST.EXE
executable are stored in the same
directory on the web server.

TEST.HTM reveals two HTML
forms with sample data controls:
one form to test standard CGI and
one form to test WinCGI. Two
forms are rarely used in real life,
but we did so here because we
need two different ACTION parame-
ters to exercise the two forms of

Data Control User Enters

AUTHOR John & Jane Doe
TITLE C++ is for Losers
ROYALTY 10%

URL-Encoded Text
AUTHOR=John+%26+Jane+Doe&TITLE=C%2B%2B+is+for+Losers&ROYALTY=10%25

➤ Figure 3

12 The Delphi Magazine Issue 16

unit CGIAPI;
interface
uses Classes, INIFIles;
type
 TEnvironmentType = (etStdCGI, etWinCGI);
 TCGI = class
 private
 FCGIItems: TStringList;
 FFormItems: TStringList;
 FEnvironmentType: TEnvironmentType;
 FOutputFile: TextFile;
 FWinCGIProfileName: string;
 FWinCGIProfile: TINIFile;
 protected
 constructor Create; virtual;
 destructor Destroy; override;
 procedure LoadStdCGIUserData;
 procedure LoadWinCGIUserData;
 procedure UnpackURLString(S: PChar); virtual;
 public
 procedure DumpWinCGIProfile;
 function GetEnv(Variable: string): string;
 procedure Write(Value: string);
 procedure WriteLn(Value: string);
 property CGIItems: TStringList read FCGIItems;
 property EnvironmentType: TEnvironmentType
 read FEnvironmentType;
 property FormItems: TStringList read FFormItems;
 property OutputFile: TextFile read FOutputFile
 write FOutputFile;
 property WinCGIProfile: TINIFile read FWinCGIProfile;
 end;
var CGI: TCGI;
implementation
uses SysUtils, Windows;
const
 NumCGIVars = 15;
 { Standard names used by calling application to reference
 CGI variables. They generally follow the WinCGI names. }
 CGIVarNames: array[0..NumCGIVars - 1] of string[31] =
 (’SERVER SOFTWARE’, ’SERVER NAME’,
 ’SERVER PORT’, ’CGI VERSION’,
 ’REQUEST PROTOCOL’, ’REQUEST METHOD’,
 ’LOGICAL PATH’, ’PHYSICAL PATH’,
 ’EXECUTABLE PATH’, ’QUERY STRING’,
 ’REMOTE HOST’, ’REMOTE ADDRESS’,
 ’REMOTE USER’, ’CONTENT LENGTH’,
 ’CONTENT TYPE’);
 { These are actual variable names used by each protocol. }
 CGIVars: array[0..NumCGIVars - 1, TEnvironmentType] of
 string[31] =
 { etStdCGI etWinCGI }
 ((’SERVER_SOFTWARE’, ’SERVER SOFTWARE’),
 (’SERVER_NAME’, ’SERVER NAME’),
 (’SERVER_PORT’, ’SERVER PORT’),
 (’GATEWAY_INTERFACE’, ’CGI VERSION’),
 (’SERVER_PROTOCOL’, ’REQUEST PROTOCOL’),
 (’REQUEST_METHOD’, ’REQUEST METHOD’),
 (’PATH_INFO’, ’LOGICAL PATH’),
 (’PATH_TRANSLATED’, ’PHYSICAL PATH’),
 (’SCRIPT_NAME’, ’EXECUTABLE PATH’),
 (’QUERY_STRING’, ’QUERY STRING’),
 (’REMOTE_HOST’, ’REMOTE HOST’),
 (’REMOTE_ADDR’, ’REMOTE ADDRESS’),
 (’REMOTE_USER’, ’REMOTE USER’),
 (’CONTENT_LENGTH’, ’CONTENT LENGTH’),
 (’CONTENT_TYPE’, ’CONTENT TYPE’));
constructor TCGI.Create;
var I: Integer;
begin
 inherited Create;
 FCGIItems := TStringList.Create;
 FFormItems := TStringList.Create;
 { Detect whether we are standard CGI or WinCGI. }
 if GetEnv(’SERVER_NAME’) <> ’’ then
 FEnvironmentType := etStdCGI
 else begin
 FEnvironmentType := etWinCGI;
 FWinCGIProfileName := ParamStr(1);
 FWinCGIProfile := TINIFile.Create(FWinCGIProfileName);
 end;
 { Assign and open our output file accordingly. }
 case EnvironmentType of
 etStdCGI: AssignFile(OutputFile, ’’);
 etWinCGI: AssignFile(OutputFile,
 WinCGIProfile.ReadString(’System’, ’Output File’, ’’));
 end;
 Rewrite(OutputFile);
 { Write standard HTML header for the output page. }
 WriteLn(’Content-type: text/html’);
 WriteLn(’’);
 { Load CGI variables and user’s form variables. }
 case EnvironmentType of
 etStdCGI: begin
 for I := 0 to NumCGIVars - 1 do
 FCGIItems.Values[CGIVarNames[I]] :=
 GetEnv(CGIVars[I, etStdCGI]);
 LoadStdCGIUserData;
 end;
 etWinCGI: begin
 for I := 0 to NumCGIVars - 1 do
 FCGIItems.Values[CGIVarNames[I]] :=

 WinCGIProfile.ReadString(’CGI’,
 CGIVars[I, etWinCGI], ’’);
 LoadWinCGIUserData;
 end;
 end;
end;
destructor TCGI.Destroy;
begin
 CloseFile(OutputFile);
 FCGIItems.Free;
 FFormItems.Free;
 FWinCGIProfile.Free;
end;
procedure TCGI.DumpWinCGIProfile;
{ Writes contents of WinCGI profile file to response page. }
var FCB: TextFile;
 Rec: string;
begin
 if FWinCGIProfile <> nil then begin
 AssignFile(FCB, FWinCGIProfileName);
 Reset(FCB);
 try
 while not Eof(FCB) do begin
 ReadLn(FCB, Rec);
 WriteLn(Rec + ’
’);
 end;
 finally
 CloseFile(FCB);
 end;
 end;
end;
function TCGI.GetEnv(Variable: string): string;
{ Returns the value of the given environment variable. }
var EnvVariable: array[0..127] of char;
 EnvBuffer: array[0..1023] of char;
begin
 StrPCopy(EnvVariable, Variable);
 Result := ’’;
 if GetEnvironmentVariable(PChar(Variable), @EnvBuffer,
 SizeOf(EnvBuffer)) <> 0 then
 Result := StrPas(EnvBuffer);
end;
procedure TCGI.LoadStdCGIUserData;
{ Reads, parses, decodes values for standard CGI form variables }
var
 ContentLength: LongInt;
 InputFCB: File;
 InputBuffer: PChar;
 RequestMethod: string;
 UserContentBuffer: string;
begin
 RequestMethod :=
 Uppercase(FCGIItems.Values[’REQUEST METHOD’]);
 { If form action is a POST, then get form variables
 from standard input device. }
 if RequestMethod = ’POST’ then begin
 if FCGIItems.Values[’CONTENT TYPE’] <> ’’ then begin
 ContentLength :=
 StrToInt(FCGIItems.Values[’CONTENT LENGTH’]);
 AssignFile(InputFCB, ’’); { standard input }
 Reset(InputFCB, 1);
 try
 InputBuffer := StrAlloc(ContentLength + 1);
 FillChar(InputBuffer^, ContentLength + 1, #0);
 try
 BlockRead(InputFCB, InputBuffer^, ContentLength);
 UnpackURLString(InputBuffer);
 finally
 StrDispose(InputBuffer);
 end;
 finally
 CloseFile(InputFCB);
 end;
 end;
 end
 { If the form action is GET, then we get form variables
 from the QUERY STRING variable. }
 else if RequestMethod = ’GET’ then begin
 UserContentBuffer := FCGIItems.Values[’QUERY STRING’];
 InputBuffer := StrAlloc(Length(UserContentBuffer));
 try
 StrPCopy(InputBuffer, UserContentBuffer);
 UnpackURLString(InputBuffer);
 finally
 StrDispose(InputBuffer);
 end;
 end;
end;
procedure TCGI.LoadWinCGIUserData;
{ Copies values for WinCGI form variables. }
begin
 { All form variables are found in the [Form Literal]
 section of the profile file. }
 WinCGIProfile.ReadSectionValues(’Form Literal’,
 TStrings(FFormItems));
end;
procedure TCGI.UnpackURLString(S: PChar);
{ Parses and decodes a URL-encoded string. Copies variable
 values into the FFormItems field. }
{ Listing continues on facing page... }

14 The Delphi Magazine Issue 16

{Listing continued from facing page... }

var LabelStr: ShortString;
 ValueStr: ShortString;
begin
 LabelStr := ’’;
 ValueStr := ’’;
 while S^ <> #0 do begin
 case S^ of
 ’+’ : ValueStr := ValueStr + ’ ’;
 ’%’ : begin
 ValueStr := ValueStr +
 Chr(StrToInt(’$’ + (S + 1)^ + (S + 2)^));
 Inc(S, 2);
 end;
 ’=’ : if LabelStr = ’’ then begin
 LabelStr := ValueStr;
 ValueStr := ’’;
 end;
 ’&’ : begin
 FFormItems.Values[LabelStr] := ValueStr;
 ValueStr := ’’;
 LabelStr := ’’;
 end;

 else ValueStr := ValueStr + S^;
 end;
 Inc(S);
 end;
 if ValueStr <> ’’ then
 FFormItems.Values[LabelStr] := ValueStr;
end;
procedure TCGI.Write(Value: String);
{ Standard Write to the output page. }
begin
 System.Write(OutputFile, Value);
end;
procedure TCGI.WriteLn(Value: String);
{ Standard WriteLn to the output page. }
begin
 System.WriteLn(OutputFile, Value);
end;
initialization
 CGI := TCGI.Create;
finalization
 CGI.Free;
end.

➤ Right: Figure 4
➤ Facing page and above:

Listing 1

program CGITest;
{$APPTYPE CONSOLE}
uses SysUtils, CGIAPI;
var I: Integer;
begin
 with CGI do begin
 WriteLn(’<HTML><HEAD>’);
 WriteLn(’<TITLE>CGI/WinCGI Test Page</TITLE>’);
 WriteLn(’</HEAD><BODY>’);
 Write(’Environment: ’);
 case EnvironmentType of
 etStdCGI: WriteLn(’Standard CGI
’);
 etWinCGI: WriteLn(’WinCGI
’);
 end;
 WriteLn(’
’);
 WriteLn(’CGI Variables:
’);
 for I := 0 to CGI.CGIItems.Count - 1 do
 WriteLn(CGI.CGIItems[I] + ’
’);
 WriteLn(’
’);
 WriteLn(’Form Variables:
’);
 for I := 0 to CGI.FormItems.Count - 1 do
 WriteLn(CGI.FormItems[I] + ’
’);
 WriteLn(’</BODY></HTML>’);
 end;
end.

➤ Listing 2

CGI. The calling convention shown
for the WinCGI ACTION property is
how you emulate WinCGI with
Microsoft Internet Information
Server. The CGITEST.DLL file re-
sides in the same directory as the
TEST.HTM page. CGITEST.DLL is
actually a renamed copy of
IS2WCGI.DLL obtained from the
Win32 SDK for Windows NT 4.0.
When this DLL is invoked, it trans-
lates the standard CGI environ-
ment variables into WinCGI INI files
and executes an EXE of the same

name in the same directory.
Remember, we have only one
CGITEST.EXE for either standard
CGI or WinCGI: there are no coding
changes required.

Figures 5 and 6 (next page) show
the response pages for standard
CGI and WinCGI respectively.

Conclusion
The TCGI component is not meant
to be a commercial-grade Internet
component. This was more of an
educational exercise than any-

thing. You can expand on it as
much as you like and all your CGI
apps could then share common ac-
cess through your version of TCGI.
Also, bear in mind that you can still
access everything through the
GetEnv function and the WinCGIPro-
file property, although you would
no longer be transparent to which
CGI protocol was being used.

In the next issue, we’ll embellish
the TCGI component a bit and see
how to use it to build the web
version of The Delphi Magazine’s
Article Index Database (with BDE
access and everything!).

Steve Troxell is a Senior Software
Engineer with TurboPower
Software. He can be reached by
email at stevet@tpower.com or on
CompuServe at 74071,2207

For Further Information
CGI: hoohoo.ncsa.uiuc.edu/cgi/

 www.eborcom.com/webmaker/#cgip
 http://ute.usi.utah.edu/bin/cgi-programming/counter.pl/
 cgi-programming/index.htm

WinCGI: http://website.ora.com/wsdocs/32demo/windows-cgi.html
FastCGI: www.fastcgi.com

December 1996 The Delphi Magazine 15

➤ Figure 5 (IP addresses deliberately distorted) ➤ Figure 6 (IP addresses deliberately distorted)

<HTML>
<HEAD><TITLE>CGI/WinCGI Test</TITLE></HEAD>
<BODY>
<P>
Standard CGI

<FORM ACTION=
 “http://www.steve.tpower.com/cgi-bin/cgitest.exe”
 METHOD="POST">
Speed:

<INPUT TYPE="radio" NAME="SPEED" VALUE="F" CHECKED>Fast

<INPUT TYPE="radio" NAME="SPEED" VALUE="S" >Slow

<P>
Skill:
<SELECT NAME="SKILL">
 <OPTION VALUE="B"> Beginning
 <OPTION VALUE="I"> Intermediate
 <OPTION VALUE="A"> Advanced
</SELECT>
Comment<INPUT TYPE="text" NAME="COMMENT">
<P>
<INPUT TYPE="RESET">
<INPUT TYPE="SUBMIT">
</FORM>
<HR>

<P>
WinCGI

<FORM ACTION=
 “http://www.stevet.tpower.com/cgi-bin/cgitest.dll”
 METHOD="POST">
Speed:

<INPUT TYPE="radio" NAME="SPEED" VALUE="F" CHECKED>Fast

<INPUT TYPE="radio" NAME="SPEED" VALUE="S" >Slow

<P>
Skill:
<SELECT NAME="SKILL">
 <OPTION VALUE="B"> Beginning
 <OPTION VALUE="I"> Intermediate
 <OPTION VALUE="A"> Advanced
</SELECT>
Comment<INPUT TYPE="text" NAME="COMMENT">
<P>
<INPUT TYPE="RESET">
<INPUT TYPE="SUBMIT">
</FORM>
</BODY>
</HTML>

➤ Listing 3

16 The Delphi Magazine Issue 16

	Standard CGI
	WinCGI
	Server APIs
	FastCGI
	Data Encoding
	The TCGI Component
	Testing The TCGI Component
	For Further Information
	Conclusion

